Modeling Electrophysiological Coupling and Fusion between Human Mesenchymal Stem Cells and Cardiomyocytes
نویسندگان
چکیده
Human mesenchymal stem cell (hMSC) delivery has demonstrated promise in preclinical and clinical trials for myocardial infarction therapy; however, broad acceptance is hindered by limited understanding of hMSC-human cardiomyocyte (hCM) interactions. To better understand the electrophysiological consequences of direct heterocellular connections between hMSCs and hCMs, three original mathematical models were developed, representing an experimentally verified triad of hMSC families with distinct functional ion channel currents. The arrhythmogenic risk of such direct electrical interactions in the setting of healthy adult myocardium was predicted by coupling and fusing these hMSC models to the published ten Tusscher midcardial hCM model. Substantial variations in action potential waveform-such as decreased action potential duration (APD) and plateau height-were found when hCMs were coupled to the two hMSC models expressing functional delayed rectifier-like human ether à-go-go K+ channel 1 (hEAG1); the effects were exacerbated for fused hMSC-hCM hybrid cells. The third family of hMSCs (Type C), absent of hEAG1 activity, led to smaller single-cell action potential alterations during coupling and fusion, translating to longer tissue-level mean action potential wavelength. In a simulated 2-D monolayer of cardiac tissue, re-entry vulnerability with low (5%) hMSC insertion was approximately eight-fold lower with Type C hMSCs compared to hEAG1-functional hMSCs. A 20% decrease in APD dispersion by Type C hMSCs compared to hEAG1-active hMSCs supports the claim of reduced arrhythmogenic potential of this cell type with low hMSC insertion. However, at moderate (15%) and high (25%) hMSC insertion, the vulnerable window increased independent of hMSC type. In summary, this study provides novel electrophysiological models of hMSCs, predicts possible arrhythmogenic effects of hMSCs when directly coupled to healthy hCMs, and proposes that isolating a subset of hMSCs absent of hEAG1 activity may offer increased safety as a cell delivery cardiotherapy at low levels of hMSC-hCM coupling.
منابع مشابه
Evaluation of In Vitro Differentiation of Cardiomyocyte-like cells Derived from Human Bone Marrow Mesenchymal Stem Cells
Purpose: To investigate the in vitro differentiation process of cardiomyocyte-like cells derived from human bone marrow mesenchymal stem cells under the influence of 5-azacytidine (5-aza). Materials and Methods: After purification, human bone marrow mesenchymal stem cells were exposed to 5-aza at a concentration of 5 μmol for 5 weeks to induce cardiomyocyte differentiation. To induce differenti...
متن کاملEvaluation of the role of mico-RNAs in cardiomyocytes differentiation of mesenchymal stem cells
Stem cells are a good alternative for regenerative medicine because of their characteristics such as self-renewal and differentiation potential. They are classified into different types of stem cells including embryonic stem cells, induced pluripotent stem cells, multipotent stem cells, and ultimately uni-potent stem cells. Mesenchymal stem cells extracted from adult tissues. Due to the lack of...
متن کاملDifferentiation of Mesenchymal Stem Cells Derived From Human Adipose Tissue into Cholinergic-like Cells: In Vitro Study
Introduction: Cholinergic-associated diseases currently constitute a significant cause of neurological and neurodegenerative disabilities. As the drugs are not efficient in improving the suffered tissues, stem cell treatment is considered an effective strategy for substituting the lost cells. Methods: In the current study, we set out to investigate the differentiation properties of human adip...
متن کاملIn vitro histological investigation of interactions between rat decellularized large intestine scaffold and human adipose derived mesenchymal stem cells
The aim of this study was to investigate the interactions between rat intestine decellularized scaffold and human adipose derived mesenchymal stem cells. Rat large intestine was dissected in fragments and decellularized by physicochemical methods. The scaffolds were loaded by human adipose derived mesenchymal stem cells expressing green fluorescent protein. Microscopic sections were prepared fr...
متن کاملComparison of BAX and Bcl-2 Expression During Human Embryonic Stem Cell Differentiation into Cardiomyocytes and Doxorubicin-induced Apoptosis
Back ground: Although the cell differentiation is an inseparable part of development in multicellular organisms, the regulating molecular pathway of it still is not fully defined. In the other hand, apoptosis is a fundamental physiological process which plays an essential role in a variety of biological events during development. Moreover, recent studies have found that apoptosis shows several ...
متن کامل